Long non-coding RNA urothelial carcinoma associated 1 (UCA1) mediates radiation response in prostate cancer
نویسندگان
چکیده
Radioresistance remains a significant obstacle in the treatment of Prostate Cancer (PCa). To simulate the clinical scenario of irradiation resistance (IRR), we created DU145-IRR PCa cell lines by treatment with 2 Gy daily IR for 59 fractions. DU145-IRR cells acquired an aggressive phenotype as evidenced by increased clonogenic survival, tumorigenic potential and invasiveness. We performed transcriptome profiling to discover dysregulated genes in DU145-IRR cells and identified the long non-coding RNA (lncRNA), Urothelial carcinoma-associated 1 (UCA1). We first investigated the role of UCA1 in radiation response and found that UCA1 abundance was significantly higher in DU145-IRR cells compared to control cells. UCA1 siRNA-knockdown reversed the aggressive phenotype and significantly increased sensitivity to IR. UCA1 depletion inhibited growth, induced cell cycle arrest at the G2/M transition and decreased activation of the pro-survival Akt pathway. We then studied the clinical significance of UCA1 expression in two independent cohorts of PCa patients: MSKCC (130 patients) and CPC-GENE (209 patients). UCA1 over-expression was associated with decreased 5-year disease-free survival in MSKCC patients (HR = 2.9; p = 0.007) and a trend toward lower biochemical recurrence-free survival in CPC-GENE patients (HR = 2.7; p = 0.05). We showed for the first time that UCA1 depletion induces radiosensitivity, decreases proliferative capacity and disrupts cell cycle progression, which may occur through altered Akt signaling and induced cell cycle arrest at the G2/M transition. Our results indicate that UCA1 might have prognostic value in PCa and be a potential therapeutic target.
منابع مشابه
Augmented expression levels of lncRNAs ecCEBPA and UCA1 in gastric cancer tissues and their clinical significance
Objective(s): As the second cause of cancer death, gastric cancer (GC) is one of the eminent dilemmas all over the world, therefore investigating the molecular mechanisms involved in this cancer is pivotal. Unrestricted proliferation is one of the characteristics of cancerous cells, which is due to deficiency in cell regulatory systems. Long non-coding RNAs (lncRNAs) have emerged as critical re...
متن کاملLong non-coding RNA urothelial carcinoma associated 1 induces cell replication by inhibiting BRG1 in 5637 cells
Long non-coding RNA urothelial carcinoma associated 1 (UCA1) was first identified in bladder cancer tissues. High expression of UCA1 in bladder cancer has suggested it may serve as a potential diagnostic molecular marker for bladder cancer. Subsequent research in bladder cancer cell lines showed that UCA1 can promote cell proliferation, but the underlying mechanism remains unknown. In the prese...
متن کاملLong Non-Coding RNA (lncRNA) Urothelial Carcinoma-Associated 1 (UCA1) Enhances Tamoxifen Resistance in Breast Cancer Cells via Inhibiting mTOR Signaling Pathway
BACKGROUND Long non-coding RNA (lncRNA) UCA1 is an oncogene in breast cancer. The purpose of this study was to investigate the role of UCA1 in tamoxifen resistance of estrogen receptor positive breast cancer cells. MATERIAL AND METHODS Tamoxifen sensitive MCF-7 cells were transfected for UCA1 overexpression, while tamoxifen resistant LCC2 and LCC9 cells were transfected with UCA siRNA for UCA1 ...
متن کاملLong non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression
A growing number of studies indicated that long non-coding RNAs (lncRNAs) determine some cellular processes in cancer, such as proliferation, metastasis and differentiation. Urothelial carcinoma associated 1 (UCA1), an lncRNA, had been reported for its overexpression and oncogenic effect on various human cancers. In this study, we found that UCA1 was significantly overexpressed in gallbladder c...
متن کاملInhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer
CRISPR/Cas9 is a novel and effective genome editing technique, but its application is not widely expanded to manipulate long non-coding RNA (lncRNA) expression. The lncRNA urothelial carcinoma-associated 1 (UCA1) is upregulated in bladder cancer and promotes the progression of bladder cancer. Here, we design gRNAs specific to UCA1 and construct CRISPR/Cas9 systems targeting UCA1. Single CRISPR/...
متن کامل